
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

Deploying Image Generation Models into Interactive Prototypes

PETER KUN, IT University of Copenhagen, Denmark

Fig. 1. Prototype version of GenFrame

Image generation models have triggered a paradigm shift in how we can express ourselves in visual digital art. Despite their enormous
uptake both for amateur and expert uses, deploying these models into interactive prototypes is still largely unexplored. In this paper,
we present the design of a research prototype, GenFrame – an image generating picture frame, which will be used to study how people
relate to this technology when deployed in familiar contexts. While developing GenFrame, we re�ect on the research-through-design
journey of the design decisions made for an interactive artifact that is centered around the questions of control of image generation
models.

CCS Concepts: • Human-centered computing! Interaction design process and methods; • Applied computing!Media
arts.

Additional Key Words and Phrases: di�usion models, image generation, research through design, tangible interaction, cultural heritage
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1 INTRODUCTION

Image generation models have introduced a paradigm shift in how we approach digital art. Tools, such as Midjourney,
DALLE-2, and Stable Di�usion [17] are o�ering people new ways to create high quality digital art, already changing
professions dealing with visual content generation, that previously took years of gaining expertise [18]. These powerful
models are capable of imitating the styles of artists from their massive training sets, and capable of depicting unlimited
types of objects or domains. These broad and powerful capabilities have been creating controversy around art and AI
tools recently [19]. Dispite the controversial uses of democratizing the generation of AI art, these tools also have vast
potentials for more targeted use-cases around visual content generation. For example, recent research have explored
the use of Stable Di�usion for GUI prototyping [26], visual story generation [3, 11], or co-creative tools for visual
story generation [4]. These early examples, combined with how the creative visual professions are integrating image
generation models into their daily practices, hint at that AI will be an integral part of our everydays.

Beyond the use-cases of supporting creative visual professions, these powerful image generation models could also be
used for enabling new experiences by embedding them into new artifacts. As it still requires much technical skills and
hardware to integrate an image generation model into an artifact or an experience, there are only few early examples
available. For example, in the OP-Z Stable Di�usion project, a synthesizer’s outputted MIDI notes are translated into
real-time AI generated imagery using Stable Di�usion [13]. This project uses synesthesia theory to map audio metrics
such as rhythm, notes or BPM into Stable Di�usion prompts that describe shapes, color and movements of the imagery.
Another exploration is the Paragraphica camera [8], which is a physical camera without an actual lens. The camera
takes the contextual data from the user, such as their location, the weather, what is nearby, and combines those with
user-speci�ed image style, seed and model temperature, to generate a prompt for Stable Di�usion and use that for
generating the "photo".

While these examples do illustrate some possibilities, it remains unknown whata kind of design considerations
are to be taken into account in designing experiences enabled by image generation models, what kind of technology
pipeline is necessary, and what kind of limitations and possibilities exist. In this paper, we tackle these questions with
the development of GenFrame, an image generating picture frame, which resembles a classical art piece in a museum,
however equipped with modern technology. Our aims with this research product [14] is to explore the research question:

• What are the challenges and possibilities of designing artifacts and experiences with image generation models?

We explore this question through re�ecting on the design process of the GenFrame. In a future study, we plan to use
this research product also for deploying it in various �eld studies with the public and experts to elicit people’s opinions
and sentiments about AI generated experiences when it is attempting to commesurate with classical artwork and its
typical contexts.

In this position paper we present our work-in-progress design and position it in literature. As GenFrame is part of an
ongoing research project, we detail our plans for an evaluation study, which will take place later.
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2 BACKGROUND

2.1 Image generation models

Recent years’ machine learning innovations, such as the Tranformer model [25], CLIP [16] and image di�usion [23]
have established paradigmatic progress around visual content generation. Di�usion-based image generation models,
such as DALL-E, Midjourney, and Stable Di�usion [17] are capable of generating images from noise, while iteratively
improving the image generation against a textual prompt, how well does the generated output matches the prompt.
This technique initially started with combining VQGAN and CLIP [2], and inspired both the private sector as well as
the open source community to pursue new research and developments for using them for creative tasks. The open
source community around Stable Di�usion has been continously implementing fresh AI papers’ �ndings into public
repositories in Github, and has been working towards increasingly easier access of Stable Di�usion for the masses
by optimizing to consumer GPUs. While the highly-polished outputs of Midjourney and DALLE-2 had once been
considered the highest quality of outputs, Stable Di�usion, with its associated ecosystem has caught up. A large part of
that is primarily the improvement of tools to control Stable Di�usion. Methods, such as ControlNet [27], and �ne-tuning
methods such as LoRA [6] and Dreambooth [20], enable precise control of how Stable Di�usion works to better and
better convey the intent of the user. Such control may be the style or content of the image, or the composition of the
image, such as people’s poses, or a sketch of contours for content.

2.2 Interacting with image generation models

Prompting and prompt engineering have become a primary interaction paradigm for image generation models, o�ering
a low threshold for users due to their reliance on natural language inputs. However, unlike direct manipulation [21]
that a�ords �ne-grained control over tasks, prompting can yield unpredictable results, making the output challenging
to control resulting in brute-force techniques to convey design intent [12]. Furthermore, prompting through natural
language resembles the "lower threshold, higher ceiling" [22] HCI principle of being widely accessible, but also widely
expressive. However, when prompting practices for control turn into prompt engineering, where prompts are carefully
crafted for speci�c outcomes, prompting veers away from natural language and resembles programming. Recent work
in HCI has tried to address these issues with multimodal prompting that includes initial images next to the text prompts
[15]. While these advancements in techniques and research has been helping the end-users using these text-to-image
models to generate speci�c outputs, it has remained unexplored so far how to interact with these models when they are
embedded into an interactive experience, outside of end-user tooling.

2.3 Research prototypes, knowledge generation with RTD

Research through design (RTD) [28] has formalized ways how designs, or technology probes [7] deployed into everyday
scenarios can be used for scienti�c inquiry. HCI researchers have primarily focused on prototyping as a method to
support RTD and in broadly, explorations with technology [9]. In this space, the applied nature of prototyping has been
interwined with conceptualizing ideas through them [24]. During the development of a prototype for design exploration,
the designer can decide what aspects of the prototype to work out and what to �lter out, and what type of manifestation
the prototype stands for in order to re�ectively engage with the idea behind [10]. With the establishment of RTD as a
formalized technique for knowledge production, there has been a move from un�nished and potentially fragile (i.e.,
"quick and dirty") prototypes towards established products with higher quality of �nish, �t into their contexts in order
to enable independent studies focused on inquiry-driven deployments [14].
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3 GENFRAME — AN IMAGE GENERATING PICTURE FRAME

In this section we present GenFrame (see Figure 1), an artifact that utilizes image generation algorithms without text
prompts interaction. Our approach is to practically engage with the design and development processes of building this
artifact and re�ect on the process.

3.1 Design considerations

GenFrame is approached as a research product [14], meaning it is designed to be inquiry-driven, �nished, contextually
�tting, and independent. This design ethos is re�ected in the aesthetic presentation, making GenFrame resemble a
painting displayed in a museum, with an interface akin to the descriptive placards usually seen next to exhibit items.
Interaction with the GenFrame is con�ned to the manipulation of three dials, which control the style of the image, the
mood of the person depicted, and the classi�er guidance for the model (see also Figure 3). We took inspiration for this
interface from guitar pedals and musical instruments, to balance expressivity and simplicity.

We chose to utilize Stable Di�usion with our own server deployment to maintain control over the whole AI pipeline,
alleviating black-boxing issues often associated with AI algorithms otherwise. To maintain an internal consistency
across the generated images, we employed ControlNet to harmonize the composition of the displayed images. This
feature ensures that despite the variability of the image generation, a sense of cohesiveness is retained.

3.2 Hardware

Our hardware con�guration consists of several components. A Samsung The Frame 32" screen, with an ornate gold
frame, was chosen for its matte screen which provides reasonable viewing angles for art display and its golden frame
enhances classical art aesthetics. We used a Raspberry Pi 4 model B, equipped with a Pimoroni Automation Hat, to run
the software, facilitate the screen connection, and allow for analog input. A Pimoroni Inky What e-ink display was
included to maintain the aesthetics expected from the placards next to museum items; it exhibits the title of the image,
which also serves as the image prompt. To �ne-tune the image generation prompt, we implemented three 12-state
rotary switches.

These choices were driven by the principle of high quality �nish commeasureable to paintings and their context in a
museum setting.

3.3 So�ware

The software con�guration is based on Stable Di�usion V1.5 model [17] due to its open-source nature, deployability,
and high customizability, albeit at the cost of pre-canned aesthetics as o�ered by platforms like Midjourney. To unify the
image appearance and for obtaining high-quality customized results, we incorporated ControlNet [27]. ControlNet is
an end-to-end neural network architecture that allow the control of Stable Di�usion with task-speci�c input conditions,
in this case with an OpenPose estimate of a face [1] (see also Figure 2). We used the vanilla SD1.5 model weights
available from HuggingFace, without any �ne-tuning. These choices were driven by the the principle of using an image
generation model and pipeline where we maintain control over the whole process, and it is transparent and explainable
to a great length.

We developed custom code running on the Raspberry Pi. Three scripts are running in parallel, one monitoring the
user input and sending them to the second script that contains the backend logic and sends API requests to our Stable
Di�usion server, and a third script that shows the received images on the screen.
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3.4 Operations

We achieve consistency between generated images by incorporating an original seed image of a face, as shown in Figure
2. All images are portrait of a woman, to keep it topically similar. The user has an agency to change the style of the
image, the mood of the woman, and the "classi�er guidance" of the model. The classi�er guidance de�nes how closely
the model is following the prompt, potentially compromising over quality of the output.

Fig. 2. Le�: Seed image of an OpenPose face to unify the generated images. Right: An example image generated by Stable Di�usion
for the prompt "surreal portrait of an anxious maiden".

Fig. 3. The dials for user input. These dials provide user input over the style of the generated image, the mood of the depicted person,
and the model guidance how closely follow the prompt.

4 STUDY PLANS

Our study plan for GenFrame involves deploying the installation shown on Figure 4 into di�erent situations. First,
we plan to conduct a �eld study with the general public to assess their reactions to a dynamic, AI-driven art piece
lacking traditional permanence normally associated with classical art. Second, we plan to move to a museum context,
where we can examine perceptions from regular visitors and art curators, exploring their envisioning of new ways to
experience cultural heritage with GenFrame. Lastly, we plan to engage with designers to probe into the potential they
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see for AI image generation models within interactive experiences. Each of these studies expected to o�er di�erent
type of insights into how di�erent audiences interact with and perceive GenFrame, allowing us to explore its potential
for experiencing art in new ways.

Fig. 4. GenFrame installation work-in-progress.

5 DISCUSSION – CONTROL OF IMAGE GENERATION MODELS AND DESIGN IMPLICATIONS

This section summarizes our re�ections from the design process to create GenFrame, a research product exploring
embedding image generation models into interactive experiences. According to Amershi et al. (2019), the role of control
in interactive AI systems is critical for user acceptance and understanding. This premise guided the design of GenFrame,
where we implemented a user interface with three controllable dials. These dials enable users to modify the system’s
output, enhancing the interaction experience by o�ering the potential for customization.

However, an inherent challenge was in deciding which aspects to allow customization for and what each dial should
control, essentially, decisions that were made by us, the designers of GenFrame. This exercise represented an e�ort
to strike a balance between providing su�cient control to the user and maintaining the AI’s capacity for creativity
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and novelty. If the states of all the dials were explicitly de�ned with a one-to-one mapping, the system would simply
reproduce pre-rendered outputs, failing to harness the AI’s potential for generating in�nite unique designs.

One of the fundamental tensions in designing AI systems is between the broad capabilities of general technologies
and the need for control and predictability. In the broadest sense, these technologies are capable of almost anything.
However, the output must be sensible, appreciable, and pleasing to the user, and match the intended use case. Achieving
this delicate balance is a key design challenge.

We attempted to address this challenge in GenFrame with ControlNet and by including a face as part of the seed
image to maintain consistency between image generations. This approach aimed to restrict the system’s capabilities
constructively, limiting it to producing results that align with user inputs and expectations, while still maintaining an
element of novelty [5]. Overall, in order to embed image generation models to interactive prototypes require advanced
control over the models that ensures that the outputs are within the space the designer envisioned. The current toolings
are primarily support a human-AI co-creation work�ow to craft and iterate over a single image, not to delimit the
generated images of the model within a speci�c space.

6 CONCLUSIONS

In this position paper we present GenFrame, an image generating picture frame. GenFrame is a work-in-progress
research product designed to explore the design process required for embedding image generationmodels into interactive
experiences. This paper presents the design challenges we faced with GenFrame and enlists the ways we plan to use
GenFrame as a research instrument in �eld studies. Focusing on the design of an interactive artifact that embeds image
generation models and provides users with agency to change what generated art is shown on the picture frame, the
issues of control comes up, both at the level of what is facing the user, as well as what design decisions need to happen
to delimit the model for the speci�c use-case. We provide a preliminary re�ection on the design challenges of control.
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