

Activity 2.1: Heat transfer by Conduction in solids, liquids and gases

Part 1: Solids

Introduction: Paperclips can be 'stuck' to a metal rod using Vaseline. When the rod is heated the Vaseline melts and the paperclips fall.

Equipment needed:

- Retort Stand
- Metal rod (ideally copper)
- Paper clips x 4
- Bunsen Burner
- Petroleum jelly (Vaseline)
- Watch/timer

Procedure:

- 1. Set up the apparatus as shown in figure 1
- 2. Watch what happens carefully
- 3. Record the time for each paperclip to fall in the table below.

Figure 1.

Record your data:

Paperclip	1	2	3	4
Time in Seconds				

Conclusion:

What happens when the rod is heated at one end? What did you observe?

Fill in the blanks

This experiment shows that heat must ha	ve travelled along the rod from the hot end to the other end.			
This kind of heat transfer is called	Thermal conductors are materials that			
allow heat to pass through them	Metals are			
conductors of heat and so are often used where we want quick movement of heat energy. Some				
materials are	conductors of heat and are called thermal insulators. Wood			
and plastic are examples of	·			

Discussion Questions

- 1. Why does the handle of a metal saucepan usually covered with an insulating material?
- 2. Name three good thermal conductors.
- 3. Name three good thermal insulators.
- 4. Why are wooden spoons used for stirring food that is being cooked? (It is not just to stop you from scratching the non-stick)
- 5. Why does the canteen serve soup in polystyrene cups? (and it is not just because the cups are cheap)

Part 2: Liquids

Introduction: Investigate why liquids are poor conductors of heat

Equipment needed:

- Retort stand
- Small rock or metal weight
- Water
- Ice cube
- Test tube
- Bunsen burner

Procedure:

- 1. Set up the apparatus as shown
- 2. Carry out the experiment as shown

Conclusion:

1. What did you observe? Does the ice cube melt when the water at the top of the test tube boils?

Discussion Questions:

- 1. Why is there a weight on the ice?
- 2. What does this tell you about how good liquids are at conducting heat?

Part 3: Gases_____

Instructions: If a gas is a good conductor, the air between the flame and the match should conduct the heat and light the match – it does not. Why not?

Materials:

- Match
 - Bunsen burner

Procedure:

- Carefully hold a safety match 1cm away from a Bunsen burner flame.
- DO NOT put the match in the flame.

Conclusion:

What did you observe?

Gases are ______ conductors of heat. This means that they are good

