

Ubi-Designer: A Web-Based Toolkit for
Configuring and Field-Testing UbiComp Prototypes

Martijn H. Vastenburg
Faculty of Industrial Design Engineering

Delft University of Technology
Landbergstraat 15

2628 CE, Delft, The Netherlands
+31-15-2784960

M.H.Vastenburg@tudelft.nl

Halldór Fjalldal, Charles van der Mast
Faculty of Electrical Engineering, Mathematics and

Computer Science
Delft University of Technology

Mekelweg 4, 2628 CD, Delft, The Netherlands
+31-15-2782549

H.Fjalldal@student.tudelft.nl
C.A.P.G.vanderMast@tudelft.nl

ABSTRACT
Technology is now available for creating affordable sensor
networks and infrastructures for ubiquitous computing
environments. In the area of ambient assisted living, context-
awareness is considered to be a key factor towards creating
acceptable solutions that support elderly people in living
independently in their homes as long as possible. Unfortunately,
at the present state of technology, the design of context-aware
products and services requires substantial technical knowledge.
Consequently, product designers are often dependent on engineers
for implementing prototypes and consequently prototyping their
design concepts is a costly and time-consuming process. This
paper presents a web-based toolkit that supports product designers
in prototyping and configuring interactive context-aware services
in multiple homes. The toolkit has been designed and tested in
close collaboration with interaction designers. Using the toolkit,
designers can make fast design iterations and eventually lower
development cost.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces – prototyping, user-centered design.

General Terms
Design, Algorithms.

Keywords
Ubiquitous computing, context-aware products and services,
design, toolkits, prototyping.

1. INTRODUCTION
The vision of ubiquitous computing is getting closer to reality.
Technology is in place for creating environments that sense the
state of the environment and the activities of its inhabitants;

services can be developed that pro-actively adapt the environment
to the actual user needs. Examples of state-of-the-art systems
include applications for monitoring and stimulating social
connectedness [9], physical play [11], and stimulating physical
exercise [10].

Even though hardware components needed for building context-
aware products and services are generally available, it tends to be
hard to link the components together. Data from the sensors need
to be collected, stored, and interpreted, and the system needs to
react accordingly. In case of a standalone product with only few
sensors attached, implementation of a design concept can be
simple. In case of a distributed system, e.g., several houses with
participants, a range of sensors and complex functionality, the
development and deployment of a prototype can be troublesome.

This paper describes a toolkit for supporting designers of
interactive context-aware products and services. First, the existing
product design process is studied in relation to context-aware
products and services. Second, the requirements for a toolkit
supporting the designers are identified. Third, the design of the
toolkit is described. Fourth, the results of the evaluation of the
toolkit with a panel of industrial designers are presented.

2. DESIGN PROCESS
In order to better understand the needs of the designers, we started
with studying the current design practice. The design process
generally consists of several stages. Based on a series of
observations of product design processes, Buxton identified three
design stages as depicted in Figure 1 [2]. First, the design stage
represents a creative phase in which product ideas are explored
and the feel and interaction involved in performing the desired
functions are studied. Many designers start with design sketches;
these sketches evolve into working prototypes that capture the
essence of the designed concepts. These prototypes enable people
to experience the feel and interaction. The design stage is
concluded by a clear description of the projected product.

Figure 1. The design process of products can be broken into
three stages: a creative stage (“design”), a development stage

(“engineering”), and a marketing and sales stage (“sales”).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PETRA’09, June 09-13, 2009, Corfu, Greece.
Copyright 2009 ACM 978-1-60558-409-6…$5.00.

Whereas the design stage tends to be creative and explorative, the
engineering stage can be characterized as a goal-oriented
implementation phase. Even though the technical details yet need
to be filled in, the requirements describing the projected product
unambiguously define the desired outcome. Most of the time, the
prototypes used in the design phase will not be re-used in the
engineering phase; the engineering goals usually require
rebuilding from scratch.
The sales stage concludes the product design process. After the
engineering stage has finished, the product is ready for shipping.

Buxton emphasizes the differences between the design stage and
the engineering stage. The design stage is a creative stage that
requires creative people. In his observations, designers tend to be
creative and innovative, whereas engineers tend to be extremely
well organized and technically strong. One needs both designers
and engineers to complete the design process successfully.
Designers and engineers have a different job to do, and likewise
they need different tools to do the job.

Both designers and engineers advocate the notion of rapid
prototyping and iterative design, but the purpose of developing
prototypes differs. In the design stage, prototypes are used to
experience the feel and interaction; the technology used is of
minor relevance. In the engineering stage, on the other hand, the
focus is on technology; prototypes are used to test technical
aspects of the hardware and software design.

Dow et al. (2006) studied the design stage in order to be able to
define the appropriate tools for professional designers. Rather
than taking a technology-centered approach, they took a design-
centered stance. The central challenge underlying their study was
to find out how professional designers externalize ideas for off-
the-desktop computing, and how these ideas inform next
generation design tools. Observations and interviews with 11
designers revealed that whereas the design process differs from
one designer to another, the general flow underlying the process is
the same. Figure 2 shows the design steps underlying the creative
design stage, as defined by Dow et al.

Figure 2. The design steps underlying the creative design stage

(adapted from [4]).

The first steps of the design stage tend to be abstract. Designers
define the problem domain and explore the design space using
e.g., focus groups, probes and brainstorm sessions. Early design
ideas are generally paper-based, for example using story boarding
or scenarios. The design ideas evolve into working prototypes in
which the look and feel of the design concept can be experienced
by both the designers and by the target users. The result of the

design stage is a concrete description of a product concept that is
ready to be constructed by engineers. This product design process
has been used as a reference in the development of the Ubi-
Designer toolkit as described in the following sections.

3. RELATED WORK
As discussed in the previous section, the product design process
involves not only designers, but also engineers. Most of the
existing toolkits for developing context-aware products are
focused on engineers, for example the Context Toolkit [3] and the
Pervasa Atlas platform [8]. These toolkits enable engineers to
configure sensors, abstract sensor data, and feed services with
abstracted information. The toolkits generally give access to all
details of the systems, thereby providing high flexibility, at the
cost of learnability. Whereas these toolkits are flexible and
powerful, they tend to be hard to use for non-engineers.

Several toolkits have been developed targeted at designers. These
toolkits generally support the iterative development of prototypes
in an easy-to-understand way, rather than focusing on scalability
and low footprint in terms of memory usage and processing
power. Notably, many industrial designers and design students use
MaxMSP1, a visual programming environment, for building
context-aware prototypes. MaxMSP is a dataflow-oriented
programming environment, in which for example sensors can be
visually linked to processors and actuators. In our observations,
MaxMSP was found to work best for standalone prototypes that
are based on standard library components. When a certain
prototype requires non-standard components, implementation can
be hard. Furthermore, management of a distributed set of sensors
using MaxMSP is complex; scalability certainly is an issue here.

Whereas MaxMSP is targeted at sensor-based applications in
general, CollaborationBus is targeted specifically at ubiquitous
computing applications [6]. Users can define system behavior by
specifying the information flow from sensors to actuators. The
status of sensors and information flow is visualized in the
application in real-time. The application provides an elegant
solution for configuring and monitoring a ubiquitous system in a
single home. Since CollaborationBus does not provide a
mechanism to cluster sensors and information flows, it is currently
not usable for a prototype test in multiple homes using a single
server. Furthermore, CollaborationBus lacks easy access to the
system via a web interface.

Next to the tools for professionals, there are also tools targeted at
non-expert users. For example, the Jigsaw editor enables non-
expert users to visually build a ubiquitous environment [7].
Devices are represented as jigsaw pieces that can be dragged and
assemble to build a ubiquitous environment. Similarly, iCap
allows end-users to visually program their system by defining
situations and actions without writing any code [3]. Whereas these
tools make it easy to construct simple prototypes, it is hard if not
impossible to create a more complex system. Furthermore, none
of the end-user-programming tools is capable of managing
multiple homes.

1 www.cycling74.com/products/maxmsp

4. PROBLEM STATEMENT
The toolkits as discussed in section 3 show how context-aware
systems can be configured and managed by end-users, designers
and engineers. Whereas toolkits are available for single-house
applications, there are no tools available that support designers in
creating applications for a series of houses. In the current trend of
living labs and longitudinal testing in the field, there is an actual
need for a design tool that does cover multiple houses.

The goal of this project is to provide designers with a tool that
they can use to easily prototype design concepts, and test these
prototypes in multiple homes in the field. The tool should enable
designers to link distributed sensor nodes to a central system, and
to link distributed services to the same central system. The focus
will be on the domestic application domain.

5. REQUIREMENTS
Based on observations of design practices, discussions and
interviews with industrial designers at the Faculty of Industrial
Design Engineering in Delft, the overall design goal was
translated into the following list of high-level user requirements.
REQ1. Enable designers to configure the system.
Whereas a programmer might be needed to initially setup a
prototype system, designers indicated that they prefer to be able
to configure and change the system themselves.
REQ2. Enable designers to easily monitor the status of sensors
and services.
Designers indicated that it can be hard to monitor a prototype
when it is being tested in the field. It should be possible to check
the status of the system remotely.
REQ3. Provide flexible mechanism for defining situations.
Designers indicated that they want to be able to define situations
in relation to sensor values (e.g., temperature=20 oC), abstracted
information (e.g., user activity=”cooking”), statistics (e.g.,
average temperature=20 oC), and temporal patterns (e.g., # toilet
visits in the morning).
REQ4. Enable designers to link actions to situations.
Designers indicated that they prefer to be able to define system
behavior themselves. System behavior is generally defined by
linking actions to situations; when a situation is recognized by the
system, the appropriate action is activated. In practice, the
situations and actions often need to be adapted to specific
settings.
REQ5. Enable designers to fake sensors and simulate events.
Designers indicated that they would like to test a prototype system
using both real data and simulated events.
REQ6. Support a multi-home setting.
Increasingly, prototypes for pervasive health applications are
tested in multiple houses at the same time. The inherent
complexity in sensors and infrastructure results in problems when
configuring and monitoring the system. A toolkit should provide a
way to manage the complexity of a multi-home test setting.
REQ7. Make platform open to external hardware and
software components.
Sensors, communication hardware, and data processing software
differ from project to project. A toolkit should be open to new
components.

6. UBI-DESIGNER TOOLKIT
In developing the toolkit, the primary aim was to create a setting
in which designers could develop, test and improve their
prototypes in quick iteration cycles. The toolkit would need to
give access to the required functionality without burdening the
designers with technical details. Ideally, a designer could build
and test a context-aware prototype from scratch without support
from an engineer.

There were however two obstacles that could not be solved
without support of engineers:

1) Linking new sensors to the system. There is no standard set of
sensors available. Designers tend to explore the design space, and
therefore they often use non-standard sensors. Since there are no
industry-wide protocols for communication with sensors,
engineers are needed to interface new sensors with a context-
aware system.

2) Writing non-trivial algorithms for interpreting sensor data.
Most designers are able to analyze data using basic functions. In
many situations, however, data analysis requires a skilled
programmer.

Whereas a generic context-aware system, consisting of a database,
a reasoner and communication infrastructure, can well be used as
a start, an engineer is needed to set up project-specific sensor
configuration and data processors. With all infrastructural
components in place, however, a designer could well monitor and
adapt the system without help of an engineer.

To achieve this separation between low-level technical access and
high-level ‘creative’ access to the system, it was decided to create
a layered system consisting of a platform that entails the low-level
middleware functionality needed to deploy a context-aware
prototype, and a web-based toolkit that provides high-level access
to the platform (figure 4). The platform collects the data from the
sensors in the field, processes the data, and sends events to
registered services. For this project, a basic generic platform was

Figure 4. The system design consists of two layers:

the platform layer provides low-level access to engineers, and
the toolkit layer provides high-level access to designers.

implemented. The web-based toolkit can be used to configure and
monitor the sensors, data interpretation mechanisms and the
events. Using the web interface, designers can monitor and update
the configuration both in the field (when setting up the prototype)
and from a remote location (when monitoring a field test).

The UBI-Designer toolkit enables designers to change the
configuration of the sensors, the software algorithms for
processing sensor data, and the rules that trigger the actuators.

6.1 Sensors
The toolkit shows a list of all sensors attached to the system,
including the location and the status of the sensors (Figure 5). The
designer can switch between a general overview and a filtered
view showing the sensors for a specific project (e.g., house) only.
Sensor values can be simulated (by selecting the sensor in the list,
and pressing “simulate”), which makes it easier for designers to
test the system behavior.

New sensors are automatically listed when they are registered
with the context-aware service platform. Sensors register to the
system using a simple protocol, which has to be implemented for
new sensor types by an engineer. Likewise, a sensor can be
simulated, by linking a piece of software to the platform that
mimics the behavior of a real sensor. Using these virtual sensors,
a system can be tested without all hardware in place.

Figure 5. The input view shows the status of all sensors.

All sensors communicate to the central platform through the
Internet. A message-based protocol is used to communicate the
sensor status and sensor values to the platform. The Internet-based
communication makes it easy for designers to deploy sensors in
multiple locations in the field.

6.2 Processors
Low-level interpretation of sensor data, using for example pattern
recognition, is facilitated using processors. These processors are
virtual sensors that can are treated the same way as sensors. A

library of processors is readily available to be used by the
designers. Since creation of new processors requires extensive
programming skills, it was decided to shield the details of
processors from the designers. Engineers can create new
processors in Java using a template, and add the processors to the
library. Figure 6 shows the panel that enables designers to activate
and configure the processors from the library. Processor values
can be simulated similar to sensor values; this way, designers can
easily test the link between processors and services.

Figure 6. An overview is given of all processors available for
interpreting low-level sensor data.

6.3 Rules
Designers can define situations and actions using a rule-editor.
Each rule links a situation to an event; these events trigger
services that are linked to the platform. For example, a high-
temperature situation could be linked to an event, which
automatically activates the air-conditioning. It was decided to
provide simplified access to the JESS rule engine [5]; the JESS
engine itself was integrated in the platform, hidden from the
designer’s eye. The Ubi-Designer rule-editor (Figure 7) provides
simplified access to the JESS rule engine. To speed up the rule-
definition, a pre-defined list of templates is available that covers
often-used constructs.

Figure 7. New rules can be defined using a rule-editor, which

provides simplified access to a rule engine.

The rules-panel (Figure 8) can be used to simulate events. Each
rule can be simulated, which makes it easier for designers to test
the system behavior. The active attribute indicates the status of the
rule; a rule is active whenever the situation as defined by the
conditional elements is being matched.

Figure 8. Using the rules view, designers can check the status
of the rules, and simulate events.

6.4 Services
The context-aware platform is primarily used to provide services
with relevant context information. For example, a medicine
reminder service needs to know when medicine is taken. For most
of the design projects observed, the services were developed in
Flash. The platform will collect sensor data and recognize those
situations that are related to medicine intake using service-specific
rules. The service is notified of these situations using XML
messages.

When using Ubi-Designer, services need to register themselves at
the platform by sending a predefined XML message to the server.
As part of the registration process, services have to register for
events. The status panel (Figure 9) shows the status of all services
connected to the platform.

Figure 9. The status pane provides an overview of the status of

the services that are connected to the platform.

6.5 Projects
When talking to industrial designers, it became clear that the
number of sensors, processors and rules can be high. For a single
house, the use of 30 sensors is not uncommon. Whereas managing
a context-aware prototype in a single house can be hard, it is even
more complex to manage a context-aware prototype in a multi-
home setting. A multi-home setting requires not only a higher
number of sensors, but also a higher number of processors, rules
and services, often with different settings for each participant.
Therefore it was decided to add a clustering mechanism to the
toolkit. Each sensor, processor, rule and service can be linked to a
project. A designer can select a project in the toolkit, thereby
focusing only on relevant components. Using projects, the
complexity of a multi-home system has been reduced.

7. Evaluation
The Ubi-Designer toolkit has been evaluated with designers in a
formative evaluation. The evaluation aimed to find out if the
toolkit supports designers in easily prototyping design concepts in
a multi-home setting. Three service designers were asked to use
the toolkit for configuring and prototyping an imaginary remote
monitoring-service following a predefined scenario. The
participants were experienced in interaction design, and they were
all currently working on designing context-aware applications.
The participants used their own personal computer to access the
web-based interface of the toolkit. A paper-based tutorial
describing the steps that had to be taken was given to the
designers. In the assignment, the participants had to create new
rules to detect situations, and they had to link a service application
to the platform. After finishing the assignment, participants were
asked to rate the overall experience using a questionnaire, which
was based on the usability scales as proposed by Benyon et al.
(2005). The questionnaire concluded with seven questions in
which the participants were asked for their experiences and for
feedback.

The participants took about 30 minutes to complete the
assignment; the questionnaire took about 15 minutes per
participant. The average user ratings are shown in Table 1.
According to the user ratings, the toolkit was considered very
useful for prototyping context-aware services. All three
participants rated the toolkit the maximum score on usefulness
when prototyping activity-aware services. The average scores on
ease-of use, visual design quality, trustworthiness and
pleasantness in use all range between +1 and +2.

Table 1. Averaged user ratings on the toolkit user interface (n=3).

Item Average score
(-2=low, +2=high)

Ease-of-use +1
Usefulness +2
Visual design quality +1.33
Trustworthiness of the toolkit +1.66
Pleasantness in use +1.33

In general, the participants could easily configure the assigned
service. They did however need some time to get familiar with the
rule syntax. They suggested adding a tutorial that would explain
how rules can be defined. Furthermore, the participants would like
to have a rule editor that allowed more expressive constructs;
apparently, the rule editor in the prototype was experienced as too
simplified. Next to these general comments, there were some
detailed remarks that help streamlining the interface; for example,
rather than manually validating new rules, the participants would
like the toolkit to automatically validate rules.

Based on the results of the formative evaluation, the rule editor
will be improved. As a next step, the toolkit will be evaluated by a
panel of approximately 10 designers who will be using the toolkit
in a realistic setting with real design cases.

8. DISCUSSION AND FUTURE WORK
This paper proposed a web-based toolkit that can be used by
designers for configuring and monitoring context-aware
applications. Using the toolkit, designers can easily configure and
monitor context-aware systems, whereas traditional toolkits would
require a skilled engineer. The toolkit enables designers to make
quick design cycles. This makes it easier to involve end users in
the design process, since the feedback of users can now be
incorporated in the prototype without getting back to engineers.
Compared to traditional toolkits for creating context-aware
systems, the Ubi-Designer toolkit combines the flexibility and
ease-of-use of design-oriented solutions with scalability and
robustness of technology-oriented solutions.
The toolkit has been developed in close collaboration with
designers, and a formative evaluation has been conducted with
three designers. As a next step, the toolkit will be applied in a
series of design cases, in order to collect feedback in a realistic
setting. More information on the toolkit and the second stage of
the evaluation can be found online2.
In terms of shielding complexity from designers, we do need to
find the right balance between expressiveness and ease-of-use.
Whereas many of the technical details can easily be shielded from
the designers, the designers would like to have full control in
configuring the rules. A new version of the toolkit will therefore
include an improved rule-editor that offers full control when
defining rules.

9. ACKNOWLEDGMENTS
The work presented in this paper was part of the Independent at
Home project (MMI06011), funded by SenterNovem through the
IOP-MMI program. The authors would also like to thank the
industrial designers who participated in the design and evaluation
of the toolkit.

2 http://independentathome.tudelft.nl/toolkit

10. REFERENCES
[1] Benyon, D., Turner, P., and Turner, S. 2005. Designing

Interactive Systems: People, Activities, Contexts,
Technologies. Addison-Wesley.

[2] Buxton, W. 2003. Performance by Design: The Role of
Design in Software Product Development. In Proceedings of
the Second International Conference on Usage-Centered
Design, 1-15.

[3] Dey, A. K., Sohn, T., Streng, S., and Kodama, J. 2006. iCAP:
Interactive Prototyping of Context-Aware Applications.
Pervasive 2006, Springer LNCS 3968, 254-271.

[4] Dow, S., Saponas, T. S., Li, Y., and Landay, J. A. 2006.
External Representations in Ubiquitous Computing Design
and the Implications for Design Tools. In Proceedings of the
6th Conference on Designing Interactive Systems, 241-250.

[5] Friedman-Hill, E. 2003. JESS in Action: Rule-Based
Systems in Java. Manning Publications Co.

[6] Gross, T., and Marquardt, N. 2007. CollaborationBus: An
Editor for the Easy Configuration of Ubiquitous Computing
Environments. In Proceedings of the 15th Euromicro
International Conference on Parallel, Distributed and
Network-Based Processing, 307-314.

[7] Humble, J., Crabtree, A., Hemmings, T., Åkesson, K.-P.,
Koleva, B., Rodden, T., and Hansson, P. 2003. "Playing with
the Bits" User-Configuration of Ubiquitous Domestic
Environments. In Proceeding of the 5th Conference on
Ubiquitous Computing, Springer LNCS 2864, 256-263.

[8] King, J., Bose, R., Hen-I Yang, Pickles, S., and Helal, A.
2006. Atlas: A Service-Oriented Sensor Platform: Hardware
and Middleware to Enable Programmable Pervasive Spaces.
In Proceedings of the 31st IEEE Conference on Local
Computer Networks, 630-638.

[9] Morris, M. E. 2005. Social Networks as Health Feedback
Displays. IEEE Internet Computing 9(5), 29-37.

[10] Vastenburg, M. H., Visser, T., Vermaas, M., and Keyson, D.
V. 2008. Designing Acceptable Assisted Living Services for
Elderly Users. European Conference on Ambient
Intelligence. Springer LNCS 5355, 1-12.

[11] Wakkary, R., Hatala, M., Lovell, R., and Droumeva, M.
2005. An Ambient Intelligence Platform for Physical Play. In
MULTIMEDIA '05: Proceedings of the 13th Annual ACM
International Conference on Multimedia, 764-773.

